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Abstract. Feynman’s powerful path integral variational method is translated into the 
language of a Hamiltonian formalism. The lowest energy and the effective mass expressions 
of Feynman are exactly reproduced in  a Hamiltonian language. We introduce two kinds 
of subsidiary vector fields, one of which is intended to approximate the true interaction 
and still be simple enough to be exactly solvable. The other has negative energy and will 
compensate the effects of the first one approximately. 

1. Introduction 

A useful dynamical approximation method for quantum field theoretical models, 
applicable for any coupling strength, is always highly interesting. In this respect the 
polaron model Hamiltonian was extensively studied in the fifties, because of its 
simplicity enabling one to draw some definite conclusions, but still complicated enough 
so as not to be exactly solvable. The lowest energy and the effective mass of polarons 
are well known in the weak and also strong coupling regions. But, of course, physically 
the most interesting and also the most difficult cases are the intermediate coupling 
regions. In 1954 Feynman (l95.5, 1972) developed a powerful variational method 
covering all the coupling strengths. Until recently this seemed to be the most successful 
approach to this problem. On the other hand, this variational method was based on 
a path integral and, as is well known, practically only the Gaussian type of trial 
functional can be evaluated in path integrals. So Feynman desired to find out how 
his method may be expressed in conventional notation, so as to be able to extend it 
for other trial functionals. About 25 years ago, we studied this problem (Yamazaki 
1956) but were not able to succeed. This is a successor of our old paper, which solves 
the problem mentioned above. 

In 5 2 we define our extended model Hamiltonian for the polaron.$ We introduce 
two kinds of dynamically independent vector fields A and D, whose interactions are 
governed by H A  and H D  which, up to the sign, have the same form. HA is intended 
to cover, as well as possible, the real interaction HI, while HD is used to compensate 
the effects of an arbitrarily added interaction Ha, and will give the B term in (F32). 

t On leave from: Physics Department, College of General Education, Kyoto University, Kyoto 606, Japan. 
We use the same notations as Feynman (1955), and refer to his equations as (F32) etc. 
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The appearance of negative energy or of indefinite metric seems at first sight strange 
in such a problem, but in Feynman’s (S -SI), S1 and hence the potential belonging 
to this S1 has a ‘wrong’ sign representing a compensation. The simplest way of 
expressing this situation in Hamiltonian language is the use of negative energy or of 
ghost creation and annihilation operators. 

We will use the total momentum operator, so as to be able to treat the 
effective mass at the same time. HA is simple enough so that H o + H A  = H I  can be 
diagonalised exactly, which will be explicitly performed in § 3. In P 4 we evaluate 
exp[-(Ho+HA + H I  + H D ) T ]  for large T and eliminate the phonon variable ak and 
the negative energy field D. After this elimination of the indefinite metric we can 
use the powerful Feynman inequality of the type (ex)z=e‘”’ in our formalism. Then 
we will find out that our H1 gives E l  (F33). As a second-order perturbation due to 
HI we get the A term (F31). In this way we can completely translate Feynman’s 
results into our Hamiltonian language. Due to the extra interaction Ha, our conserved 
total momentum operator changes correspondingly. By taking this into account 
correctly, we obtain quite naturally the ‘correct’ expression for the effective mass. 
Instead of Feynman’s imaginary ‘velocity’, we used the canonical conjugate momen- 
tum operator, and obtained at first a somewhat different expression for the effective 
mass, as compared with Feynman. Still we find that our final answer for the effective 
mass agrees completely with that of Feynman, without adding any ad hoc arguments, 
This is also a nice feature of our formalism, and gives confidence that our method is 
a correct translation of Feynman’s path integral method. 

Appendix 1 gives a formulation, which eliminates electron variables at first, 
Appendix 2 gives some detailed operator calculus, omitted in the text. Appendix 3 
covers the relations between A ,  B and E l .  

The extended Hamiltonian H’ 

The polaron Hamiltonian is given by 

H = Ho + HI 
where 

The total momentum operator P’ given by 

P ’ = P +  d3k kaca, J 
is conserved, 

(4) 

[P‘, HI = 0. ( 5 )  
Now we extend our Hilbert space by introducing two kinds of dynamically independent 
vector fields A ,  and D, whose interactions are given by 

H A = w ( A * + ( J ~ / w ) x ) ( A  + ( J ~ ~ / w ) x )  (6) 
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HD = - w ( D  +(J2c/w)x)(D*+(J2c/w)x) (7) 

[ A ,  A:] = [Di,  DT] = Si i .  (8) 

Other commutators with A,, A:, Di, DT are all zero, except those given in (8). 
Let us consider our extended Hamiltonian 

H ’  = H + H A  + HD 

= (Ho +HA - wDD *) +HI - J2C(X, D +D *) - (2C/ w)X2 (9) 

=Hi +HI +Hb.  

The negative energy fields D, D* are introduced so as to compensate the effect of 
the arbitrary added interaction H A ;  their roles become clear in the calculation of § 4t. 
Our intention is to treat H1 as unperturbed and HI as perturbation, while H b  plays 
the role of a compensation. Now the total momentum which is conserved is given by 

where 

n =&(A* -A).  

3. The Hamiltonian H I  

The quadratic Hamiltonian 

H 1 - 2 P  -1 2 + I d 3 k u E a k + w  -wDD* (11)  

can be diagonalised by the following unitary transformation U :  

fi1 = U-’HlU =$(U - w i  + $ P 2 +  d3k aEuk + vB*B - wDD* (12) I 
where explicitly 

U = expii  tan-'[(^/ W~)”~](J;XII - ( w  I - ~ ” P ~  11 (13) 
1 

+=:(A*+A)= 
J2 

and in general 

t T h e  lowest energy state 10~) of HD” = -wDD* is given by D*lOD) = 0, and ( H D o -  nw )D:lOD) = 0.  
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By this U transformation, our total momentum P1 given in (10) transforms into 

P l = U U - ' P l U = ( u / w ) P +  d3kka:ak [Pi, RI] = [PI, Ai + rl,] = o (16) 

where 

I 

The eigenstate of total momentum P1, with the eigenvalue Pi, is given by 

PllwP; 1) =Pi IWPi 1) IWP; 1) = Ul@.((w/u)P; 1) (18) 

where I@(P')) is defined as 

PI@(P')) = P'I@(P')) ak l@(P')) = 0. 

Hence we see that the lowest eigenstate of H1 with the total momentum Pi is given 
by 

HiI'W'; )) = EidP; )IW'i )> 

where 

E1y(P;)  =;(U - w ) + l ( w / u ) 2 P ; 2  IWP; )> = Ul@(w/u)Pi 1) (19) 

By comparing E l y  with Feynman's E l  

; ( U /  w y  U 2  ;(w/u)2P112 5m*U2t*(2m*)-'P': (20) 
we see clearly that our effective mass m* in the unperturbed H I  is (u/w)' times the 
original (unit) mass of the electron. 

4. Elimination of (Ik and D fields and the use of the inequality <e') 3e<x' 

Let us calculate 

+From now on we omit limT,m, meaning T is always tending to 03. P is the ordering operator defined 
in the last line of (Zl), meaning as usual that the operators in  the exp ( ) are arranged in decreasing order 
of I from left to right. 
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Now, taking the expectation value of (21) by lY (P i ) ) ,  the leading term of the exponent 
will not be influenced, and we obtain (\Yo) represents the true vacuum state of H ' ,  
and Eo is its eigenvalue) 

where explicitly 

As a:, ak and U, D* appear only linearly in the P exponent of (23) we can eliminate 
these variables using the properties of l @ ( w / u ) P i ) )  as given in (19). Performing this, 
we easily obtain 

The remaining exponent is a complicated expression of the operators X ( T )  whose 
dependence on T is governed by GI, and ordered in 'P' order, in the sense of Feynman's 
ordered operator. As we have already eliminated our indefinite metric field D, we 
can now use Feynman's inequality (e") 2 e'"' and get 

=exp{- T [ - A . ( P ; ) - B Y ( P \ ) ] }  

where (. . .) means to take the expectation value by the state I@(w/u)P;)). The 'P' 
ordering in the above equations (26) is important. In appendix 2 we give the detailed 
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calculation for this expectation value. The results are 

1) I ~ ( P ( e i ( k , X ( ~ i - % ( O i i  

i k g ( r i  -ik%(Oi) 
(7 > 0) = (e e 

=exp[-(k2/2~2)F(~)+(W/U)2P;kT] (27)  

where F ( T )  is defined as in (F42) 

F ( r )  = ~ ~ . + [ ( u ~ - w ~ ) / v ] ( l - e - ~ ~ ) .  

Comparing (27)  with (F29) and (F41), we notice two differences. The reason why 
Feynman has the factor ‘i’ in front of his U, i n  contrast to our expression, is clear 
since he used an imaginary velocity, while we used the canonical conjugate ‘operator’ 
P.  The second difference ( w / u ) 2  comes just as remarked in (20), showing the effective 
mass ( v / w ) *  i n  the lowest approximation as in 9: 3. Nevertheless these differences 
cause no difference in the final results, as will be shown in 9: 5 .  

The evaluation of 

(p(x (7) - x (0))’) = 2 ( x 2 ( 0 )  -x ( T ) X ( o ) )  (7 ’ 0) 

can be done as done by Feynman, by expanding both sides of (27)  with respect to k 
up to order k 2 .  Therefore we have 

(29) 2 I 2 2  ( p ( x ( T ) - X ( 0 ) ) 2 ) = [ 3 F ( 7 ) / v 2 ] - [ ( W / u )  Pi] 7 . 

Inserting (27)  and (29) into (26) ,  we obtain ( T  = 00) 

The energy value becomes now 

5. Summary and discussion 

If we expand formula (31)  in powers of Pi, up to order Pi2,  we get finally 

E(P’ ,  ) =$(U - W )  +$Pi2 ( W /  U)’- A -$A’Pi2( W /  U)‘- 3 C /  uw + (4C/ w ~ ) - $ P ; ~  ( W /  u ) ~  

where 
(32)  

m 

A = K*LYU Jo d7 e-T[F(~)]-1’2. (33)  

This coincides with (F3 l), while 
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so we get 
I 

E (Pi ) = - 3 (U - w ) 2 - A  + (?) ’ [  1 - (:)’A’ + 3 ( 32]. (35) 4u 2 u  

The ground state energy is exactly the same as given by Feynman. Concerning the 
effective mass m*, we remark that the second and third terms in the square brackets 
of (35) are small corrections compared with the main term. (They are numerically 
really small as can be seen from the numerical work of Schultz (1959).) Hence, our 
effective mass expression, obtained by regarding the last term of (35) as P:/2m*,  is 
given by 

2 2  m * = (:)’[ 1 + ( :)2Af - -J 4 c  (--) w ] = (:)’[ 1 - y+ (:)’A’] 

= 1 +A’ .  (36) 
This is also precisely the same result as obtained by Feynman (F45). 

In this derivation concerning the effective mass calculation, we need no ad hoc 
reasoning to avoid the imaginary velocity etc, and everything is consistent. 

We have not yet proved that our E ( P ; )  given above is the upper bound for the 
true Eo, since we have used our extended Hamiltonian. Concerning this point, we 
can say the following. Firstly, if we drop HD and only add HA, we will get E l - A ,  
which is certainly an upper bound, since Ha is positive definite and E1(0) is positive 
as it should be. Secondly, the calculation of the A term is independent of the presence 
of HD, and is determined only by H1 and HI t. On the other hand, the calculation of 
the B terms is independent of a or HI, and is determined only by H I  and H D t .  B is 
positive and represents the compensation of HA due to HD, but it is not an overcom- 
pensation, as E1(0) - BY(0) = (3/4u)(u - w)’ is still positive. HDo have only positive 
eigenvalues as remarked already in the footnote of p3677. The situation can be 
summarised as shown in figure 1. The above mentioned facts seem already to show 
that our El - B - A  gives an upper bound, as was proved by Feynman. 

The above argument that El  - A  -B is an upper bound is still a plausibility 
argument and not a proof. Anyway, we think we can at least translate what Feynman 
had done so nicely with the path integral variational method into the language of the 
usual Hamiltonian formalism, which was the purpose of the present paper. 

H 1 = H o + H A  
€7 - B  

0 -A 

H, + H, 

HO 

Figure 1. The lowest energy eigenvalues for different combinations of interaction Hamil- 
tonian. The absolute scale has no meaning. It is different for each value of a. 

t These are, of course concerned with the formal expressions of A and B. At the final stage of varying 
the parameters U and w ,  they correlate with each other. 
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Appendix 1. The method of first eliminating electron variables 

In Feynman's theory, the phonon variables are first eliminated, and the remaining 
electron varibles are treated by the path integral method, while those given above 
were the translation into Hamiltonian language of this method. On the other hand, 
it is well known that by a unitary transformation V 

if= v- ' (Ho+HI)V 
2 

= i ( P - J d 3 k k a t u k )  + / d 3 k a : a k + i ~  ( A l . l )  

p = V v - ' P V =  V-' 

where 

V = exp( -1 5 d3k ka:akX), 

we could first eliminate the variable X from the total Hamiltonian. The remaining 
P represents a (conserved) total momentum. If we could find a minimum eigenvalue 
of ( A l . l )  for given P, we would get a more certain bound for the effective mass than 
that given above. 

We have in our case 

- - z (P+@H)  U W J d 3 k k a ~ u k + u B * B - w D D *  

+ i K [ $ i a : - a x ) - J 2 C ( D + D * , x I - - x  2 c  - 2  

W 

(A1.4) 
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with 

h, lJ-'v-'p, vu = ( u / w ) P  (A1.5) 

and X as given by (15). In this case our AI, given by the sum of the first and second 
lines of (A1.4), is not yerdiagonal, as it still contains the ll= i ( u / 2 ~ ) " ~ ( B *  - B). So 
let us further transform H I  by W defined by 

W = e x p [ i ( s ) l / Z J  d3kka:ak ,B+B* 3 =exp ( i--- ( 4 C p 2  J d'kkU:a&) (A1.6) 
uw 

with the result 

R, = w-'& w 
2 

= $(U - w )  + d3k U t U k  + vB*B - w D D *  d3k ka:ak) (A1.7) I 
d3k utuk +vB*B - WDD* + i ( u / w ) - 2 ( d l  - J d3k ka:ak) . 

2 

The last line is expressed by using the total momentum h,. We see quite naturally 
that in this lowest approximation the effective mass is given by ( v / w ) 2 .  Using 

(A1.8) 

we can eliminate X from GI and RI, and give the same E I Y ( P ; )  and also A y ( P ; )  as 
will be shown in appendix 2. f l L  still containsx, so we cannot yet completely eliminate 
the electron variables so as to be able to express everything by ak, u t ,  B, B*,  only. 
For the calculation of Bb, with respect to th,e terms leading to B y ( P ; )  we must still 
take into account the non-commutativity of P I  and x. 

H I  - 
D = W-'f ib  W = - JE(X, D + D * ) - (2C/ w ) X 2  

Appendix 2. Operator calculus leading to (27) 

= (exp[ i k: ( X  +T ""91 exp( - [ t P 2  - (: P i ) 2  + vB *B] 71 
W 

(A2.1) 
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This e-‘ appears in (26)  in the form So we can obtain in both formulations the 
same correct expression for A y ,  and hence B y .  

The calculation in this appendix clearly shows that the dynamics of Feynman’s 
variable X,, which obeys his action S1, is completely governed by our H1 in the 
Hamiltonian formalism. 

Appendix 3. The relation between El,  A and B 

We have derived our A ,  B, El in the text, but they are related to each other just as 
in Feynman, in spite of a somewhat different appearance in the signs and coefficients 
in Pi2 /2  and U 2 / 2 .  

A y ( P ; )  = A  -Af(:)‘ $ 
3 c  4 c  w 4P1,2 1;) 2 B y ( P i )  = --3 
vw w 

U 2  
A F ( U ) = A  + A ’ -  

2 

The relations between A Y  and B y ,  AF and BF are the same, 
in the same way. Feynman derived his E1F by integrating 

c dEIF/dC = BF. 

(A3.1) 

because they are derived 

(A3.2) 

On the other hand we have not used this equation. We derived Ely and BY separately. 
Still we can easily derive the corresponding equation 

C dEly ldC = B y  (A3.3) 

by differentiating Ely by C and assuming that only U depends on C. We get also the 
‘correct’ sign in front of Pi2 /2  in B y .  This looks at first a little bit strange, because 
our correspondence 

(W/U)*Pi ff U (A3.4) 

seems to mean that if U is independent of C, then P ;  should depend on C .through 
U. But this is not the case, because everything is consistent if we use only Pi by 
assuming that this is independent of C. We should only take care that, in the case of 
the calculation, the above correspondence (A3.4) is not mixed up. The relation (A3.3) 
seems to show that our formulation, as it stands, is consistent and satisfactory. 
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